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Several automated crystallization systems have recently been

developed for high-throughput X-ray structure analysis.

However, the evaluation process for the growth state of

crystallizing protein droplets has not yet been completely

automated. This paper proposes a new evaluation method for

crystalline objects in automated crystallization experiments.

The main objective is to determine whether a droplet contains

crystals suitable for diffraction experiments and analysis. The

evaluation method developed here involves extracting line-

segment features from an image of the droplet and

discriminating the state of crystallization using classifiers

based on line features. In order to verify the efficacy of the

proposed method, it was used to classify images obtained by

an automated crystallization system.
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1. Introduction

The dynamic development of protein crystal structure-

solution methods with the application of high-throughput

nano-crystallization robots requires new fully automated

methods or systems for assessment of the crystallization trials.

However, at present the task of identification of samples

containing crystals suitable for use in X-ray diffraction

experiments from a large number of crystallization trials is still

conducted manually in most laboratories. One semi-automatic

protein crystallization and observation robot system, TERA,

has been developed at the RIKEN Harima Institute (Suga-

hara & Miyano, 2002; Sugahara et al., 2002). It incorporates a

scoring system that evaluates the growth condition of a crys-

tallization solution sample by matching it with score-decision

criteria as shown in Fig. 1 and recording the score.

The scoring operation is conducted by an expert, who

visually inspects images of crystallization-droplet samples

automatically recorded by a robot. If the droplet contains a

crystal suitable for X-ray diffraction analysis, a score between

6 and 9 is assigned. In other cases, a score between 0 and 5 is

assigned. Despite the capacity of TERA to obtain 500 000

images per month, the number of images that can be manually

processed is limited. Therefore, there is a strong need to

automate the score-decision process.

Previous studies on automated growth evaluation of crys-

tallization solutions employed various methods, including the

utilization of polarized filters (Bodenstaff et al., 2002), a

rotating polarizing filter (Echalier et al., 2004) and image

processing (Cumbaa et al., 2003; Zuk & Ward, 1991). Rupp

(2003) used phase congruency to detect a large number of

small crystals and Gester et al. (2003) automated the counting

of the number of crystals to generate three-dimensional

surface plots of the crystals and to determine the crystal size

based on the length of the perimeter of the crystals. Miyatake



et al. (2005) developed an automated crystallization/observa-

tion robotic system, HTS-80, which was reported to be able to

categorize the crystallization droplet status into four stages

based on the extracted contour information. Most of these

previous studies focused on the existence or absence of a

crystal. No detailed study to determine whether the detected

crystals are suitable for X-ray diffraction experiments has

been conducted thus far. Nonetheless, for efficient high-

throughput protein structure analysis it is important to

determine whether a specific crystal is suitable for X-ray

diffraction analysis from a large number of crystallization

droplets.

The present study aims to design and develop a method that

automatically determines whether a crystallization droplet

contains crystals suitable for X-ray crystallography. A

previous study conducted by Saitoh et al. (2004, 2005) resulted

in a highly accurate automatic determination of scores 0, 1, 2, 3

and 4–9. In this study, the images of crystallization solution

with scores between 4 and 9 are classified into either category

A, where the solution contains crystals suitable for X-ray

diffraction analysis (scores between 6 and 9), or category B,

where the solution did not contain crystals suitable for X-ray

diffraction analysis (scores 4 and 5) (Fig. 2).

A score of 4 indicates the existence of amorphous grain

which is not crystalline. Scores between 5 and 9 indicate the

existence of protein crystals. A score of 5 (microcrystal)

indicates that the sample cannot be

considered for X-ray diffraction analysis

owing to insufficient size of the crystals.

The relationship between the scores and

the crystal sizes is shown in Table 1.

Fig. 3 shows some typical examples of

pictures taken using the automated

TERA crystallization system. The

method proposed in this study was

evaluated using images which contain

several growth-status crystalline objects

(amorphous grain, microcrystal and

crystal) in the same droplet. For

example, some of the droplets contain

amorphous grain and microcrystals and

others contain microcrystals and crys-

tals.

2. Proposed method

In the proposed method, a pattern-

recognition process was used to deter-

mine whether the crystallization droplet

contained crystals suitable for X-ray

diffraction analysis. The images of the

droplet are categorized into two classes:

one in which the image contains crystals

suitable for X-ray diffraction and one in

which the image does not. The pattern-

recognition process consists of a

sequence of preprocessing, feature

extraction and classification. An appro-

priate choice of visual feature values is

important to ensure the accuracy of the

determination process. In the manual

process, during the second half of the

growth period, droplets with scores

between 4 and 9 are examined by an

expert to determine whether the crys-

tals are suitable for X-ray diffraction by
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Figure 1
The ten categories for evaluation used by the RIKEN TERA system. 0, clear; 1, precipitate (i); 2,
precipitate (ii); 3, precipitate (iii); 4, amorphous grain; 5, microcrystals; 6, needle- or plate-shaped
crystals; 7, cluster of crystals; 8, crystal (i); 9, crystal (ii). (These images are a part of the complete
droplet.)

Figure 2
Evaluation categories and categorization into categories A (scores between 4 and 5) and B (scores
between 6 and 9) in this study.

Table 1
Listing of size criteria for the protein crystals.

Score 5 (category B) Scores 6–9 (category A)

Dimension
Length (longest side) Less than 0.05 mm 0.05 mm or more
Thickness Less than 0.01 mm 0.01 mm or more
Width Less than 0.01 mm 0.01 mm or more



observing the shapes of crystalline objects (such as crystalline

and non-crystalline grains) in the crystallization droplet. Thus,

the characteristic shapes of the crystalline objects are regarded

as characteristic contours and the lines which compose the

shape contours of the crystalline objects are employed as

feature values. Fig. 4 shows the processing flow of the

proposed method.

2.1. Preprocessing

For the extraction of feature values, the images are

subjected to preprocessing and the contours of the crystalline

objects are extracted as binary edge images (Fig. 5). For this

purpose, the original colour images are converted to 256-level

greyscale images. Since the original images contain crystalline

objects other than those in the crystallization droplet, such as

the lateral side and the edge of the base part of the solution

container, a part of the image containing the crystallization

droplet is cropped from the greyscale images. The size of the

cropped images is set at 450 � 450 pixels so that most of the

base area is included. Next, an edge-detection process is

conducted on the cropped images in order to determine the

contours of crystalline objects. Of the various edge-detection

methods, the Sobel filter operation (Takagi & Shimoda, 2004),

one of the representative methods of edge detection in the

image, is employed in this study. The Sobel filter operation

followed by binarization processing is conducted on the edge-

detected images to extract the contours of crystalline objects

as binary edge images. For binarization, a certain threshold

value is fixed and only those pixels with greyscales that are

equal to or greater than this threshold value are considered to

be the objects (or edge pixels).

However, this threshold configuration remains a key

problem. Discriminant analysis (Fisher, 1936) is a threshold-

setting method based on the density histogram. When crys-

tallization droplet images are binarized

by using the threshold value determined

by discriminant analysis, several

problems are encountered. In parti-

cular, a subtle concentration difference

in the crystallization droplet is extracted

as contour lines and the contours of the

crystalline objects cannot be completely

extracted. Therefore, in the proposed

method, in order to specify a proper

threshold value for binarization, the

edge strength (caused by a subtle

concentration difference of the crystal-

lization droplet and the unevenness in

lighting) is considered. The edge-

strength distribution of the images that

do not include any crystalline object

after Sobel filter operation is examined

and utilized as an index for the

threshold configuration. Specifically, the

edge-strength distribution of 100 images

with a score of 0 (clear) (Fig. 6) was

investigated and it was found that a threshold value of 29

binarizes 99.9% of the pixels of the whole distribution as

background. This threshold is therefore employed to extract

the contour lines.

2.2. Extraction of feature values

Using the extracted contours from the binary edge images,

the effective feature values for classification are extracted.

When the contour lines of objects in categories A and B, with

the scores shown in Table 1, are compared, it was found that

the contour lines of objects belonging to category A are

composed of longer line segments than those belonging to

category B with a score of 5 (microcrystals). In addition, if the

contour lines of the objects with a score of 4 (non-crystalline

grains) are considered to be a collection of short line segments,

the contour lines of crystals in category B must be composed
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Figure 3
Examples of images obtained by TERA. Several growth states are seen to
be present in the same droplet.

Figure 5
Preprocessing flowchart of the method presented here. The method consists of cutout, edge
detection and binarization to obtain the binary edge image.

Figure 4
Processing flowchart of the method presented here. The method consists of preprocessing, feature
extraction and classification.



of relatively shorter line segments. In other words, in cate-

gories A and B the lengths of the line segments that comprise

the contour lines of the crystalline objects differ from each

other as shown in Fig. 7.

Consequently, the longest line segment within the crystal-

line object images (maximum length Lmax) is employed as the

feature quantity. However, in cases where multiple micro-

crystals are aligned, line segments that are longer than those

for crystals belonging to category A (0.05 mm) could be

obtained. However, in comparison with category A, the

percentage of line segments longer than 0.05 mm that are

contained in the contour lines of all the objects in the images

belonging to category B is expected to be smaller. Therefore,

the ratio of the linear regions longer than 0.05 mm that are

contained in the contour lines of all the crystalline objects,

Rlsec, is employed as a feature value. Furthermore, the number

of crystalline objects in category B tends to be greater than for

category A. Hence, the number of line segments in category B

is also proportionally greater (Fig. 8). The number of line

segments within the crystalline object images (Nall) is also

employed as a feature value.

2.2.1. Extraction of the maximum length and the number
of line segments. In order to extract Lmax, the maximum

length, and Nall, the number of line segments, from the feature

values, linear features are scanned within the binary edge

images. The edge pixels that exist sequentially in-line are

considered to be the line segments and their lengths and

numbers are determined. However, since it is impossible to

predict the location where the crystalline objects will be

formed in the crystallization solution and the location of the

contour lines that will be obtained by preprocessing, the

crystalline object images need to be scanned from every

possible direction. Thus, raster scanning is conducted by

altering �, the scanning direction (0 < � < 180�), as shown in

Fig. 9. An edge pixel that is detected on the scanning line when

n � 1 line segments have already been detected is counted as

the nth line segment and the pixel is considered to be the

origin of the nth line segment Sn(xsn, ysn) and the scanning

process is continued. The last edge pixel in a line segment is

considered to be the terminus En(xen, yen) and the length of the

nth line segment Ln is then determined as

Ln ¼ ½ðxen � xsnÞ
2
þ ðyen � ysnÞ

2
�
1=2: ð1Þ

This is added to the total number of line segments. For the

detection of the total m line segments at the completion of

scanning, the maximum length Lmax and the number of line

segments Nall can be evaluated, respectively, as

Lmax ¼ maxðLnÞ ð1 � n � mÞ; ð2Þ

Nall ¼ m: ð3Þ

2.2.2. Extraction of the ratio of linear regions. To extract

the ratio of linear regions Rlsec, the number of linear regions

longer than 0.05 mm within the contour lines of the crystalline

object is determined. The extracted contour lines of the

crystalline object could be distorted to some extent by noise

during preprocessing. However, even if the original linear

shape is not fully preserved, the approximate positional rela-

tion is sustained (Fig. 10).

As a result, the linearity of the region can be determined by

observation of the positional relationship between the pixels

within a region. In the case where all the

pixels within a region are positioned in-

line, three arbitrary points within a

region are selected: two linear curves

that connect the centre and two other

points will essentially be at an angle of

180�. Moreover, if points adjacent to

each other are not selected, even

slightly distorted straight lines will form

an angle similar to that made by the

unaffected straight lines. Multiple sets

of angles derived from two such lines

connecting three points are investigated

to evaluate the linearity of different

regions. Firstly, contour tracking is

performed on the binary edge images
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Figure 6
Edge-strength distribution of clear (score 0) images. The threshold value
is 29, which binarizes 99.9% of the whole distribution.

Figure 7
Contour lines representing the shape of the crystalline objects in the cutout images (100 � 100
pixels). The images in category A include a smaller number of longer line segments and the images
in category B include a larger number of shorter line segments.



and the extracted contour lines are sectioned by a width d. Sm

indicates the mth region and Sm�1 and Sm+1 are the regions in

front and to the rear of Sm, respectively. If the pixels belonging

to each region can be defined as

Sm�1 ¼ ðpm�1
1 ; pm�1

2 ; . . . ; pm�1
d Þ

Sm
¼ ðpm

1 ; pm
2 ; . . . ; pm

d Þ

Smþ1 ¼ ðpmþ1
1 ; pmþ1

2 ; . . . ; pmþ1
d Þ;

then the angle between the line that extends from the kth

point in Sm, pm
k , to the kth point in the region Sm�1 that is

located at a width d backwards from pm
k , pm�1

k , and the line that

extends from pm
k to the kth point in the region Sm+1 that is

located at a width d forward from pm
k , pmþ1

k , is defined as �mk
.

The average angle in the region Sm is calculated as

�m ¼
1

d

Rd

k¼0

�mk
dk: ð4Þ

The three regions can be detected as one linear region since

the three regions form a 180� angle if they are linearly posi-

tioned (Fig. 11). Here, an edge segment

is considered to be linear if

170 � �m � 180� ð5Þ

The contour lines of the whole image

are evaluated and the ratio of the linear

regions, Rlsec, can be evaluated as the

ratio of the number of linear regions

detected to the total number of regions.

Since the detection of line segments that

are longer than 0.05 mm (approximately

27 pixels in the image) is required

and the three regions (width 3d) are

regarded as a single combined region

when evaluating the contour lines, the

width d is set at d = 27 pixels/3 = 9 pixels.

2.3. Determination using classifiers

Lmax, the maximum length of the

extracted feature values, Nall, the

number of line segments, and Rlsec, the

ratio of the linear regions, are input into

the classifier to determine whether the

object images belong to category A or

B. Various classifiers, for example self-

organizing neural nets (Spraggon et al., 2002), C5.0 (Bern et

al., 2004) and Bayes theorem (Wilson, 2002), have been used

in previous studies for crystal image analysis.

We have investigated the various methods and have found

that the method using discriminant analysis and Support

Vector Machine (SVM; Vapnik, 1995), both of which are

noteworthy for their efficiency in two-class identification, is

the most efficient. Moreover, in the feature space consisting of

the maximum length Lmax, the number of line segments Nall

and the ratio of linear regions Rlsec, the variance between

categories A and B differs significantly. Thus, Mahalanobis’

generalized distance (Duda et al., 2001) is employed as the

classification criterion for the discrimination analysis. If the

average of p variables in class k is �k = (�1, �2, . . . , �p)T and
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Figure 9
Raster scanning of the line segments on the cutout images in the direction �. The detected line-
segment information is utilized to evaluate the image.

Figure 10
An example of the extracted line segment after preprocessing. Some of line segments in the original
image become alternate line segments, with a zigzag shape, but sustain their positional relationship
in the binary edge image.

Figure 8
The number of line segments in categories A and B.

Figure 11
The evaluation of the contour lines of a whole image. Three connected
line segments are utilized to evaluate the linear regions.



the inverse matrix of the variance–covariance matrix is
P�1

k ,

Mahalanobis’ generalized distance of the observed value

X = (X1, X2, . . . , Xp)T and the class k can be evaluated by the

equation

D
p
k ¼ ðX � �kÞ

T P�1

k

ðX � �kÞ: ð6Þ

3. Experiments and results

An experiment was conducted to verify the efficiency of the

proposed method by using discriminant analysis either with

Mahalanobis’ generalized distance or with SVM as the clas-

sifier. Furthermore, the identification ability of discriminant

analysis with Mahalanobis’ generalized distance and SVM

are compared. A library (available online at http://

theoval.cmp.uea.ac.uk/svm/toolbox/) was used for SVM and

the Gaussian kernel parameter � and the parameter C, which

adjust a soft margin, were assigned. For the experiment, we

used 300 images that had previously been classified by a

specialist (200 images from category A and 100 images from

category B). The 300 images were preprocessed and the

feature values extracted prior to classification by the different

methods. The classification rates of the different methods were

compared using the leave-one-out (l-o-o) method. The l-o-o

method is one of representative evaluation and predicts the

property value for a compound from the data set, which is in

turn predicted from regression equation calculated from the

data for all other compounds.

For the training set (300 images), a correct classification rate

of 80.0% was achieved for the discriminant analysis and 88.7%

for SVM (� = 0.5 and C = 200, � = 0.7 and C = 100).

Furthermore, a 76.3% correct classification was achieved using

the l-o-o method for the discriminant method and 88.7% in

SVM (� = 0.9 and C = 200), showing that SVM performs better

than the discriminant method.

4. Discussion

When SVM is used for classification, the correct classification

rate reached a value slightly below 90%, indicating the

effectiveness of the proposed method. Currently, a fixed value

is used for the binarization threshold, but improvements to the

method could be made by the introduction of a threshold that

would respond well to the variation in lighting conditions. This

is a challenge to be considered for future studies.

In the feature space, the data distributions of categories A

and B that are used showed a complex shape in the vicinity of

the boundary. A higher capacity is shown by SVM than by

discriminant analysis with Mahalanobis’ generalized distance

because a more complex boundary between distributions is

possible with SVM. However, this needs further verification

with a larger number of images.

The feature values that are employed in this study, the

number of line segments and the ratio of the linear regions are

evaluated for the whole image. This can result in incorrect

classification when an image consists of both categories A and

B by being affected by a region that contains a higher fraction

of the image. Fig. 12 shows an image belonging to category A;

however, characteristics indicating category B that occupy

most of the image resulted in an erroneous decision. None-

theless, if only a fraction of the crystals that belong to category

A can be extracted as feature values, such an erroneous

decision for images containing features of both categories A

and B may be diminished. Consequently, the extraction of

feature values from a crystalline object as a unit remains to be

considered.

5. Conclusions

In this study, we aimed to improve the efficiency of protein

crystal structure analysis and we proposed an automatic

evaluation method for determination of crystal suitability for

X-ray diffraction analysis. After contour lines of crystalline

objects within an image are extracted, the feature values that

are considered as effective for classification (the maximum

length, the total number and the ratio of the linear region) are

evaluated from the binary edge images. Two different classi-

fiers, discriminant analysis with Mahalanobis’ generalized

distance and SVM, were applied to these feature values. The

performance of each identifier is validated by the experiments.

Investigation of the feature-extraction method and the

introduction of a threshold for binarization that is not affected

by lighting conditions can be considered as future challenges.

Furthermore, experiments should be conducted using more

image data and the examination of classifiers other than the
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Figure 12
A typical example of an image containing crystalline objects belonging to
both categories A and B.



discriminant analysis with Mahalanobis’ generalized distance

or SVM should also be addressed.

This method will be incorporated into TERA or other

automated crystallization systems.

The authors thank Miss Maki Kumei, Mr Nobuo Okazaki,

Mr Yuki Nakamura and Mr Tomoyuki Tanaka for supplying
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